小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。

一次素质拓展活动中,班上同学安排坐成一个 m 行 n 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。

幸运的是,他们可以通过传纸条来进行交流。

纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标 (1,1),小轩坐在矩阵的右下角,坐标 (m,n)。

从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。

在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。

班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙,反之亦然。

还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用 0 表示),可以用一个 0∼100 的自然数来表示,数越大表示越好心。

小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度之和最大。

现在,请你帮助小渊和小轩找到这样的两条路径。

输入格式

第一行有 2 个用空格隔开的整数 m 和 n,表示学生矩阵有 m 行 n 列。

接下来的 m 行是一个 m×n 的矩阵,矩阵中第 i 行 j 列的整数表示坐在第 i 行 j 列的学生的好心程度,每行的 n 个整数之间用空格隔开。

输出格式

输出一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。

数据范围

1≤n,m≤50

输入样例:

3 3
0 3 9
2 8 5
5 7 0

输出样例:

34

代码实现

#include <iostream>
using namespace std;
const int N = 51;

int n, m, g[N][N], dp[N << 1][N][N];
int main () {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cin >> n >> m;
    for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= m; ++j)
            cin >> g[i][j];
    for (int k = 2; k <= (n + m); ++k) {
        for (int i1 = 1; i1 <= n; ++i1) {
            for (int i2 = 1; i2 <= n; ++i2) {
                int j1 = k - i1, j2 = k - i2;
                if (j1 >= 0 && j1 <= m && j2 >= 0 && j2 <= m) {
                    int t = g[i1][j1];
                    if (i1 != i2) t += g[i2][j2];
                    auto& x = dp[k][i1][i2];
                    x = max(x, dp[k - 1][i1 - 1][i2 - 1] + t);
                    x = max(x, dp[k - 1][i1 - 1][i2] + t);
                    x = max(x, dp[k - 1][i1][i2 - 1] + t);
                    x = max(x, dp[k - 1][i1][i2] + t);
                }
            }
        }
    }
    cout << dp[n + m][n][n];
    return 0;
} 
分类: DP

0 条评论

发表回复

Avatar placeholder

您的电子邮箱地址不会被公开。 必填项已用*标注

友情链接:Ctips' blog, Colza’s blog

站点状态:Status